Assessing temporal clear-sky errors in assimilation of satellite CO2 retrievals using a global transport model

نویسنده

  • K. D. Corbin
چکیده

The Orbiting Carbon Observatory (OCO) and the Greenhouse gases Observing SATellite (GOSAT) will make global observations of the total column dry-air mole fraction of atmospheric CO2 (XCO2 ) starting in 2008. Although satellites have global coverage, XCO2 retrievals will be made only a few times each month over a given location and will only be sampled in clear conditions. Modelers will use XCO2 in atmospheric inversions to estimate carbon sources and sinks; however, if satellite measurements are used to represent temporal averages, modelers may incur temporal sampling errors. We investigate these errors using a global transport model. Temporal sampling errors vary with time and location, exhibit spatially coherent patterns, and are greatest over land and during summer. These errors often exceed 1 ppm and must be addressed in a data assimilation system by correct simulation of synoptic CO2 variations associated with cloud systems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The potential of clear-sky carbon dioxide satellite retrievals

Since the launch of the Greenhouse Gases Observing Satellite (GOSAT) in 2009, retrieval algorithms designed to infer the column-averaged dry-air mole fraction of carbon dioxide (XCO2 ) from hyperspectral near-infrared observations of reflected sunlight have been greatly improved. They now generally include the scattering effects of clouds and aerosols, as early work found that absorption-only r...

متن کامل

CO2 flux estimation errors associated with moist atmospheric processes

Vertical transport by moist sub-grid scale processes such as deep convection is a well-known source of uncertainty in CO2 source/sink inversion. However, a dynamical link between vertical transport, satellite based retrievals of column mole fractions of CO2, and source/sink inversion has not yet been established. By using the same offline transport model with meteorological fields from slightly...

متن کامل

First direct observation of the atmospheric CO2 year-to-year increase from space

The reliable prediction of future atmospheric CO2 concentrations and associated global climate change requires an adequate understanding of the CO2 sources and sinks. The sparseness of the existing surface measurement network limits current knowledge about the global distribution of CO2 surface fluxes. The retrieval of CO2 total vertical columns from satellite observations is predicted to impro...

متن کامل

Mapping of CO2 at high spatiotemporal resolution using satellite observations: Global distributions from OCO2

[1] Satellite observations of CO2 offer new opportunities to improve our understanding of the global carbon cycle. Using such observations to infer global maps of atmospheric CO2 and their associated uncertainties can provide key information about the distribution and dynamic behavior of CO2, through comparison to atmospheric CO2 distributions predicted from biospheric, oceanic, or fossil fuel ...

متن کامل

A joint data assimilation system (Tan-Tracker) to simultaneously estimate surface CO2 fluxes and 3-D atmospheric CO2 concentrations from observations

We have developed a novel framework (“TanTracker”) for assimilating observations of atmospheric CO2 concentrations, based on the POD-based (proper orthogonal decomposition) ensemble four-dimensional variational data assimilation method (PODEn4DVar). The high flexibility and the high computational efficiency of the PODEn4DVar approach allow us to include both the atmospheric CO2 concentrations a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009